IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35,

NO. 7, JULY 2013 1757

Toward Open Set Recognition

Walter J. Scheirer, Member, IEEE, Anderson de Rezende Rocha, Member, IEEE,
Archana Sapkota, Student Member, IEEE, and Terrance E. Boult, Senior Member, IEEE

Abstract—To date, almost all experimental evaluations of machine learning-based recognition algorithms in computer vision have
taken the form of “closed set” recognition, whereby all testing classes are known at training time. A more realistic scenario for vision
applications is “open set” recognition, where incomplete knowledge of the world is present at training time, and unknown classes can
be submitted to an algorithm during testing. This paper explores the nature of open set recognition and formalizes its definition as a
constrained minimization problem. The open set recognition problem is not well addressed by existing algorithms because it requires
strong generalization. As a step toward a solution, we introduce a novel “1-vs-set machine,” which sculpts a decision space from the
marginal distances of a 1-class or binary SVM with a linear kernel. This methodology applies to several different applications in
computer vision where open set recognition is a challenging problem, including object recognition and face verification. We consider
both in this work, with large scale cross-dataset experiments performed over the Caltech 256 and ImageNet sets, as well as face
matching experiments performed over the Labeled Faces in the Wild set. The experiments highlight the effectiveness of machines
adapted for open set evaluation compared to existing 1-class and binary SVMs for the same tasks.

Index Terms—Open set recognition, 1-vs-set machine, machine learning, object recognition, face verification, support vector

machines

1 INTRODUCTION

BOTH recognition and classification are common terms in
computer vision. What is the difference? In classifica-
tion, one assumes there is a given set of classes between
which we must discriminate. For recognition, we assume
there are some classes we can recognize in a much larger
space of things we do not recognize. A motivating question
for our work here is: What is the general object recognition
problem? This question, of course, is a central theme in
vision. According to Duin and Pekalska [1], how one should
approach multiclass recognition is still an open issue.
Should it be performed as a series of binary classifications
or by detection, where a search is performed for each of the
possible classes? What happens when some classes are ill
sampled, not sampled at all, or undefined?

The general term recognition (and the specific terms
object recognition and face verification that we consider in
this paper) suggests that the representation can handle
different patterns, often defined by discriminating features.
It also suggests that the patterns to be recognized will be in
general settings, visually mixed with many classes. For
some problems, however, we do not need, and often cannot
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have, knowledge of the entire set of possible classes (see
Fig. 1). For instance, in a recognition application for
biologists, a single species of fish might be of interest.
However, the classifier must consider the set of all other
possible objects in relevant settings as potential negatives.
Similarly, verification problems for security-oriented face
matching constrain the target of interest to a single claimed
identity, while considering the set of all other possible
people as potential impostors. In addressing general object
recognition, there is a finite set of known objects in myriad
unknown objects, combinations, and configurations—label-
ing something new, novel, or unknown should always be a
valid outcome. This leads to what is sometimes called
“open set” recognition, in comparison to systems that make
closed world assumptions or use “closed set” evaluation.

For many vision problems, researchers have assumed
one has examples from all classes, and have subsequently
labeled the entire space in binary fashion as either positive
(+1) or negative (—1). In contrast, an open set scenario has
classes, not just instances, in testing that were not seen in
training. It is somewhat reasonable to assume we can gather
examples of the positive class, but the number and variety
of “negatives” is not well modeled. The important
difference is, in the words of Zhou and Huang [2] (with a
bit of inspiration from Tolstoy), “All positive examples are
alike; each negative example is negative in its own way.”
Furthermore, even if all of the negative classes were known,
from a pragmatic point of view we generally cannot have
sufficiently many positive examples to balance the required
sampling of the negatives. In either case, we seek to
generalize the problem from a closed world assumption
to an open set.

Object detection is perhaps the most familiar vision
problem that does not exist in a specific closed setting. The
goal of detection is to locate an object of interest in an
image. Since a negative detection is anything other than the
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Fig. 1. Vision problems arranged in order of “openness.” For some
problems, we do not have knowledge of the entire set of possible
classes during training and must account for unknowns during testing. In
this paper, we develop a deeper understanding of those open cases.

class of interest, the problem is much more open than
closed. Popular detection approaches train binary classifiers
with a relatively modest sampling of positive examples and
a very large sampling (often on the order of millions) of
negatives from thousands of different classes. This is an
appropriate strategy when a good sampling of the negative
classes is possible, but with very incomplete knowledge of
the possible negative classes it can lead to inaccuracies in
many settings. In addition, we are generally left with a
“negative set bias” [3] defined by the very large sampling of
classes we do know about. In a sense, when we have very
limited knowledge of the domain of possible classes,
detection becomes a special case of open set recognition,
with just one class of interest.

Fig. 1 depicts a few popular vision problems with
varying qualitative degrees of openness. Intuitively, a
problem with only a single class of interest is less open
than one with many. However, the number of unknown
classes we might encounter should also play a critical role.
Let us formalize the “openness” of a particular problem or
data universe by considering the number of target classes to
be identified, the number of classes used in training, and the
number of classes used in testing:

2 x |training classes|
openness = 1 — - .
[testing classes| + |target classes|

(1)

The above formulation yields percent openness (values
between 0 and 100 percent), where 0 percent represents a
completely closed problem and larger values more open
problems. For a fixed number of training classes, increasing
the number of testing classes increases openness, as does
increasing the number of target classes to identify. Increas-
ing the fraction of classes available during training
decreases openness. By taking the square root in (1),
openness grows in a gradual manner as the number of
classes increases (if linear, openness in this formulation
would quickly move toward 1 with just moderate numbers
of classes, which is not as meaningful). Table 1 shows
values of openness for different examples considered in our
work and others from the spectrum of problems in Fig. 1.
The number of training instances per class is important to
the accuracy of a given classifier, but is not a property of the
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TABLE 1
Examples of Openness Values for the Vision Problems of Fig. 1
as a Function of the Number of Target Classes to Be Identified,
Training Classes, and Testing Classes, Calculated Using (1)

Problem Targets | Training | Testing Openness
Typical Multi-class [1] T T T 0%
Our work: Face Verif. 12 12 50 38%
Typical Detection [4] 1 100,000 1,000,000 55%
Our work: Obj. Recog. 88 12 88 63%
Our work: Obj. Recog. 88 6 88 74%
Our work: Obj. Recog. 212 6 212 83%

Multiclass classification is always O percent open.

problem itself, and thus is not part of this definition. For
almost any unconstrained real-world problem, the number
of testing classes can grow rapidly with openness approach-
ing 100 percent.

Potential solutions to the open set recognition problem
must optimize for unknown classes, as well as the known
classes. An important difference from typical multiclass
classification is that a general open set multiclass solution
must be able to label the input as one of the known classes
or as unknown. It is not sufficient to just return the most
likely class: The classifier must also support rejection. The
first insight we offer here is that Support Vector Machines
(SVMs) define half-spaces, and will classify data that are
very far from any training sample. While we need solutions
that support strong generalization, there should be a limit
on how far from known data a sample associated with a
given label can be.

Empirical risk, measured on training data, is what is
classically defined and optimized over. However, for open
set recognition it is critical to consider how to extend the
model to capture the risk of the unknown from insufficient
generalization or specialization. This is different from the
binary classifier approach that tries to maximize the margin,
which is the gap between the positive and negative decision
boundary. While maximum margins can be very effective
for closed set problems, the approach generally results in
overgeneralization for open set problems. For example, in
Fig. 2, the space containing unknowns (“?”) would likely be
labeled “dog” as there is nothing to limit the positive label
propagation if the decision boundary exists between birds
and frogs and dogs. The SVM found a plane to separate
positive and negative classes, but only by considering the
known negatives. One might view the maximum-margin
approach as assuming all unknown points are equally likely
to be positive and negative based on what is nearest, even if
that point is quite far away. For a sample coming from an
unknown class, such as the raccoon, that is an incorrect
assumption. We believe that good solutions to the open set
recognition problem require minimizing the open space
representing the learned recognition function f, outside the
reasonable support of the training samples.

The primary goal of this work is to develop a thorough
understanding of open set recognition in a supervised
learning setting. We construct the first formalization of this
problem, and provide an empirical case expanding existing
1-class and binary SVMs with linear kernels to address open
set recognition. The resulting 1-vs-set machine is a step
toward a solution. Specifically, we revisit the ideas of the
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Fig. 2. The open set recognition problem explicitly assumes not all
classes are known a priori. Square images are from training, oval
images are from testing. The class of interest (“dog”) is surrounded by
other classes which can be known (“frog,” “birds”) or unknown (“owl,”
“raccoon,” “?”). Plane A maximizes the SVM margin making “dog” a half-
space—which is mostly open space. The 1-vs-set machine adds a
second plane Q and defines an optimization to adjust A and Q to
balance empirical and open space risk.

1-class and binary SVM for open set recognition problems,
and address the generalization/specialization issues
through a novel learning technique. Instead of tackling
the generalization/specialization problem as an error
minimization of the training function of the SVM, we
introduce a concept of open space risk and then minimize
an error function combining empirical risk over training
data with the risk model for the open space. The known
class training data represent the “Set” of 1-vs-set.

To improve the overall open set recognition error, our
1-vs-set formulation balances the unknown classes by
obtaining a core margin around the decision boundary A
from the base SVM, specializing the resulting half-space by
adding another plane 2 and then generalizing or specializ-
ing the two planes (shown in Fig. 2) to optimize empirical
and open space risk. This process uses the open set training
data and the risk model to define a new “open set margin.”
The second plane 2 allows the 1-vs-set machine to avoid the
overgeneralization that would misclassify the raccoon in
Fig. 2. The overall optimization can also adjust the original
margin with respect to A to reduce open space risk, which

can avoid negatives such as the owl.

We organize the rest of this paper as follows: First, we
formalize the open set recognition problem in Section 2. In
Section 3, we take a look at the related work in open set
recognition and machine learning across vision and pattern
recognition. In Section 4, we formalize our theoretical
model of margin generalization and specialization to
develop the 1-vs-set machine. We apply this model, as well
as common SVM models for comparison, to the problems of
object recognition and face verification and present results
in Section 5. We conclude and discuss some ideas for future
work in Section 6.
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2 OPEN SET RECOGNITION FORMALIZATION

Assume images of objects from various classes are pro-
cessed into d-dimensional representations, i.e., we measure
feature vectors z € IR”. We assume we have countably many
classes y labeled by IN, and that there exists a probability
measure P(z,y) over (z,y) C IR? x IN. For simplicity we will
focus on open set recognition of a single class, and without
loss of generality we assume the label of this class of interest
is 1. Further, we assume a sample can be either positive or
negative, but not both (no nested classes). Let P C R?
represent the positive input space where z € P if P(z,1) =
sup, P(z,y), i.e., inputs where the class of interest is the most
likely class. Recognition here can be viewed as finding an
efficient approximation of P.

Let f: R“~IN be a measurable recognition function for
some class P, mapping measurements z to labels y.
Following Smola [5], our overall goal is to find a function f
that minimizes our expected error. More precisely,
consider a loss function L(z,y, f(z)) that defines the
penalty for incorrectly labeling a vector a:

L('T7yvf('7'))20 and L(1‘7yay):0' (2)

The fundamental multiclass recognition problem would be
to find a recognition function f that minimizes the ideal
risk Rz:

wemin{ Re(f) 1= [ L f@)PEa) @

Unfortunately, since we are not given the joint distribution
P(z,y), we cannot directly minimize (3), and the problem is
unsolvable in the fundamental formulation. The traditional
approach at this point is to change the problem to use only
things we do know. As Smola notes in [5, Section 1.2.1],
“The only way out is to approximate [P(x,y)] by the empirical
probability density function...”. Hence, minimizing the ideal
risk is switched to minimizing the empirical risk. Unfortu-
nately, even minimizing empirical risk is, in general, ill
posed [5], [6]. So prior work ([6], [5], [7], among others)
exploits other knowledge, such as assuming that the label
space is at least locally smooth and regularizing the
empirical risk minimization to make it well posed. For
example, assuming that f is from a particular Reproducing
Kernel Hilbert Space (RKHS), H is a way of adding a
smoothness constraint and minimizing empirical risk over
f € H (with a regularization term) is then well posed.

This begs the question of if “the only way” to approx-
imate the ideal risk formulation is empirical risk or if there
are other things that are known that could/should be added
as we move from the ideal risk minimization of (3) to our
formulation of open set recognition. We prefer to make
minimal assumptions about f, but intuitively, there is risk
in labeling the open space as “positive” for any known
class. The insight for open set recognition is to recognize
that we do know something else: We know where positive
training samples exist and we know that in “open space”
(the space far from known data) we do not have a good
basis for assigning a label for the class of interest.

Before formalizing open space risk, we note that the
maximum-margin concept can be viewed as using weak
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knowledge on open spaces, wherein we expect there to be
errors near the decision boundary. Thus, these algorithms
seek to maximize the distance between the known data and
the decision boundary. This maximum-margin assumption
does well for the space between the classes, but does not
really address the remaining open space. There is, in
general, still infinite amounts of space far from any known
samples and often there is not even a point on the “other
side” of such open space that could be used to define a
margin. We seek to formalize and then manage such risk.

What information does open space provide? If an oracle
provides the function (z) = 1 for open space, where none
of the known classes exist, a weak recognition system
—tp(x) =1 can be built, even with no training samples.
Combining training data with 1, the estimation could be
even better. Ideally, one might hope to define open space as
the subspace R? — P, but that just reduces the definition
back to the problem of recognition. Estimating open space
from positive data leads directly to a one-class formulation
such as the 1-class SVM we examine in this paper. Note,
however, that the open space for a linear 1-class SVM is still
a half-space. Our approach to open space estimation is
similar in spirit, but the difference is that we reduce the
labeled space to less than a half space and include other
training data in the definition of open space, as well as in
the subsequent recognition function.

While we do not know the joint distribution P(z,y) in
(3), one way to look at the open space risk is as a weak
assumption: Far from the known data the Principle of
Indifference [8] suggests that if there is no known reason to
assign a probability, alternatives should be given equal
probability. In our case, this means that at all points in open
space, all labels (both known and unknown) are equally
likely, and risk should be computed accordingly. However,
we cannot have constant value probabilities over infinite
spaces—the distribution must be integrable and integrate to
1. We must formalize open space differently (e.g., by
ensuring the problem is well posed and then assuming the
probability is proportional to relative Lebesgue measure
[9]). Thus, we can consider the measure of the open space to
the full space, and define our risk penalty proportional to
such a ratio.

Consider an example with a large ball S, containing both
the positively labeled open space O and all of the positive
training examples, as well as a given measurable recogni-
tion function f where f(z) = 1 for recognition of the class y
of interest and f(x) =0 when y is not recognized. Open
Space Risk Ro(f) can be defined as

Jo f(x)da
where open space risk is considered to be the fraction (in
terms of Lebesgue measure) of positively labeled open
space compared to the overall measure of positively labeled
space (which includes the space near the positive exam-
ples). The more we label open space as positive, the greater
our open space risk. Equation (4) is only one theoretical
possibility. Other definitions can also capture the notion of
open space risk, and some may do so in more a precise
manner. This example does not include a loss function, class
conditional densities, or class priors, but it is possible to
define open space risk models that do. Such alternatives
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may allow for more precise estimations and/or simplify
multiclass formulations, but since the unknown classes
have unknown priors and unknown joint distributions, they
would need to introduce more assumptions and complex-
ity. A specific open space risk model for linear kernels is
introduced in Section 4.2.

While we want to minimize risk of the unknown in open
space, we also need to balance it against the empirical risk R¢
(the data error measure) over the training data. This empirical
risk combines data errors via some type of performance
metric (empirical probability of error and loss functions).
Researchers have looked at SVMs and other learning models
that optimize a more general data error measure [10]. While
the presentation herein applies to many measures and our
implementation can optimize for multiple different empirical
risk models, the one we consider most appropriate for the
open set problem is the inverse of the F-measure. We look at
this score in more detail in Section 5. Empirical risk can also
include the specification of hard constraints (e.g., meeting at
least a particular false accept or false reject rate), which we
discuss below.

In summary, our goal is to balance the risk of the
unknown in open space with the empirical (known) risk. In
this sense, we formally define the open set recognition
problem as follows:

Definition 1 (The Open Set Recognition Problem). Let
samples V = {vy,...,v,,} from P be our positive training
data and samples K = {k,... k,} from other known
classes IC be our negative training data. Let U be the larger
universe of allowed unknown (negative) classes which appear
only in testing and let T = {t1,...,t.}, t; e PUKUU, be
our test data, where problem openness in (1) is > 0.

Given the training data VUK, an open space risk
function R, and an empirical risk function Rg, open set
recognition is to find a measurable recognition function
f € H, where f(x) > 0 implies positive recognition, and f is
defined by minimizing the Open Set Risk:

ar%l{m{z%o( f+XNRe(f(VUK))}, (5)

where A, is a reqularization constant.

In (5), we have defined open set recognition as minimizing
the open set risk, which combines the open space risk and
empirical risk, over the space of allowable recognition
functions. Given what is assumed about the function f € H,
this definition balances what is known via V U K , and the
open space risk Rp associated with unknown classes /.

We can also allow for explicit hard constraints on the
training error (empirical risk). This is useful in some
applications where one type of error may be constrained
for operational use (e.g., a maximally allowable false accept
rate). Satisfying such constraints is not easily specified in
the minimization formulation of (5). We can add this by
making (5) subject to a constraint on the fraction of errors
observed in the training set:

m

ma <30(fw) and 76> 6k, ©)
=1

=1
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(b) 1-vs-All

Fig. 3. The trouble with binary (1-vs-1) and multiclass (1-vs-All) classification for open set problems. In a 1-vs-1 scenario (a), good separation can be
achieved between two classes during training, but this establishes margins that need not separate additional known or unknown classes. For
instance, considering the margin between class 1 and class 2 above (labeled 1 vs 2), examples from class 3 and unknown classes fall
indiscriminately across the margin. Similarly, in a 1-vs-All scenario (b), we see the same problem for unknown classes. In both cases; when
considering just an additional training example (the red circle with a star in each figure), the results can be even worse, as the margins readjust for
maximum separation. Far from the training classes, this produces very significant margin plane movement, which can be seen in the light gray new

margin separation plane 1 vs 2* in (a).

where v; € V, m is the number of positive training samples,
k; € K, n is the number of negative training samples, o > 0
and 3 > 0 allow a prescribed limit on true positive and/or
false positive rates, and ¢(z) is a given loss function, (e.g.,
the classic soft margins hinge loss ¢(z) = maz(0,1 — z) or
squared hinge loss ¢(z) = maxz(0,1 — z)* functions). For a
prescribed o and 3 it is possible there is no solution
(100 percent classification of true positives with no false
negatives is often not achievable). In a practical setting with
operational constraints, we can fix either « or § and then
choose our empirical risk term Ry, requiring the system to
effectively optimize the other parameter. This can allow us
to set minimum precision or recall rates in an object
recognition scenario or bound the false accept rate in a face
verification scenario.

In defining an open set problem, the evaluation metho-
dology must sample some of the “unknown” classes in .
Thus, they are actually “known” but excluded from
training. This is similar in spirit to general machine learning
evaluation, where we must have “known data” that is
considered unknown in training. One can do hold-out type
cross validation or simply have separate testing data.
Similarly, open set recognition can hold out some classes
for testing. Note that the formal definition does not precisely
define the space of unknown classes—we do not assume
they are enumerated, let alone modeled. It is, however,
important to define an evaluation paradigm that does
include the unknown classes. If we never test on “un-
known” classes, the solution may seem overly constrained.
Thus, testing on some set 7, where problem openness is >0,
is a requirement for open set recognition evaluation. Ideally,
evaluation should consider test sets with multiple levels of
openness and multiple sizes of training and testing data.

3 RELATED WORK

Open set recognition has received only limited treatment in
the literature, and almost all prior work focuses on
evaluation. We are unaware of any prior formal definitions
outside of evaluation protocols. In a study on evaluation

methods for face recognition by Phillips et al. [11], a typical
framework for open set identity recognition is described.
The key to evaluation in open set recognition in the context
described by Phillips et al. is the definition of an operating
threshold 7, which all classification scores must meet or
exceed to be considered matches. An open set recognition
system incorporating a threshold does not naively accept a
top score as a match, allowing it to handle the cases where a
sample does not correspond to a known class. Of course, the
choice of T remains dependent on the requirements of the
recognition system and its operating environment.

A series of thresholds can be considered to build a full
performance curve (CMC, DET, PR, etc.), with parameters
for matching instances selected by choosing one point on
the curve. This idea is not just constrained to face
recognition, and is familiar to many researchers working
in recognition areas across vision. In [12], Fayin and
Wechsler again view open set face recognition from just
an evaluation perspective, describing it as a variation of the
watch-list formulations in earlier face recognition testing at
the National Institute of Standards and Technology (NIST).
They state: “Open Set recognition operates under the
assumption that not all the probes have mates in the gallery
and it thus requires the reject option.”

Given our formal definition of open set recognition from
Section 2, we briefly discuss related work in recognition
techniques that might satisfy that definition. A natural
inclination toward solving the open set problem may be to
consider binary and multiclass learning approaches with a
representative sampling of negative training data to
generalize the classifiers as much as possible. However,
the nature of binary classification inhibits the controlled
generalization needed for the open set problem. Consider
the two examples in Fig. 3. 1-vs-1 classifiers [13] are trained
by using positive examples from one class and negative
examples from another. In a 1-vs-1 scenario, good separa-
tion can be achieved between the two classes during
training, but this does not establish margins that separate
additional known or unknown classes. 1-vs-All classifiers
[13] are trained by using examples of a single class as the
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positive training set, and examples from all of the
remaining (known) classes as the negative training set. In
a 1-vs-All scenario, we can see the same problem that is
present for 1-vs-1 for unknown classes. In both cases, when
considering just an additional training example, the results
can be even worse, as the margins readjust for maximum
separation between the known data while not taking other
potential classes into account.

Another issue for any open set problem is that the
training is both highly unbalanced and very incomplete
(especially in the case of detection). Unbalanced data
generally lead to overspecialization on the negative side.
Resampling does not really solve the problem and the
inherent imbalance in open set recognition presents issues
that binary classifiers cannot easily overcome [14]. Thus, we
turn to other methodologies that compensate for these
deficiencies in our work.

In this paper, we consider the open set recognition
problem using the 1-class and binary SVM as a basis and
introduce a new formulation to solve the problem with
respect to generalization/specialization. While it is possible
that a density estimator (such as [15], [16], [17], [18]) could
be used instead of the SVM, we restrict our focus to linear
kernel machines. SVM has a number of desirable traits for
this work: Its solutions are global and unique, it has a
simple geometric interpretation, and it does not depend on
the dimensionality of the input space. And it has been
considered for open set recognition before.

3.1 SVM Approches to Open Set Recognition

The 1-class SVM introduced by Scholkopf et al. [19] adapts
the familiar SVM methodology to the open set recognition
problem. With the absence of a second class in the training
data, the origin defined by the kernel function serves as
the only member of a “second class.” The goal then
becomes to find the best margin with respect to the origin.
The resulting function f after training takes the value +1
in a region capturing most of the training data points and
—1 elsewhere.

Let p(x) be the probability density function estimated
from the training data {z1, 29, ..., 2y, | z; € X}, where X isa
single class. A kernel function ¥ : X — H transforms the
training data into a different space. To separate the training
data from the origin, the algorithm solves the following
quadratic programming problem for w and p to learn f:

T, n 1
in — N &-», 7
minglwll +53 26— 7)
subject to

(w-W(z) = p =&

where p is an offset that parameterizes the hyperplane in
the feature space defined by the kernel ¥, and ¢; are slack
variables. The kernel function ¥ impacts density estimation
and smoothness. The regularization parameter v € (0,1]
controls the tradeoff between training classification accu-
racy and the smoothness term ||w| and also impacts the
choice and number of support vectors. In the 1-class SVM,
p(xz) is cut by the margin plane minimizing (7) and
satisfying (8). Regions of p(z) above the margin plane

i:1,27.-«7m fizov (8)
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define positive classification and capture most of the
training data. As some researchers have pointed out in
the literature [20], the 1-class SVM does not provide
particularly good generalization or specialization ability,
which has limited its use.

While not as much of an issue for binary SVMs, using
Radjial Basis Function (RBF) kernels, especially with a large
7, can also lead to overspecialization. This can occur when
“abusing” a 1-class SVM by performing grid search over the
parameters and then testing with all available positive and
negative examples for a given dataset. While still formally a
1-class SVM, since only positive data are used for fitting, the
optimization of class parameters to avoid negative training
examples from the entire dataset is not appropriate.

The 1-class SVM has received some (albeit limited)
attention in the computer vision literature—mostly in the
areas of image retrieval and face recognition. The applica-
tion of 1-class SVMs to problems in computer vision was
first made by Chen et al. [21] a decade ago. For binary
classification, equal treatment is usually given to positive
and negative training examples. However, Chen et al. argue
that for image retrieval, while it is reasonable to assume that
positive training examples cluster in a certain way, the same
cannot be said about negative examples since they can
belong to any class. Thus, for an open set problem, it seems
natural to consider a 1-class SVM, which is trained using
only positive examples for a target class. The feasibility of
this approach was shown by Chen et al. [21] (and in
subsequent works [22], [23]), but with a caveat: kernel and
parameter selection. Zhou and Huang note [20] that RBF
and other Gaussian kernels are commonly used for 1-class
SVMs, often leading to an “overfitting” of the training data,
with kernel parameters selected in an ad hoc manner,
resulting in an overall lack of generalization to many
classes. We believe the lack of generalization and speciali-
zation, combined with the common practice of closed set
testing, are the primary reasons that the 1-class SVM did not
gain much traction in vision.

Detection, as noted in the introduction, is an important
open set problem, and several 1-class SVM techniques have
been proposed to address it in that context. An interesting
approach was presented by Hongliang et al. [24], where
1-class SVMs are used for face detection. By choosing to
optimize the data used to train a l-class SVM through
subset selection and inclusion of negative examples as
positive, they improved the generalization. This partially
addresses the concerns of Zhou and Huang [20] at the
training stage, but is logically inconsistent with no
theoretical support. Cevikalp and Triggs [25] used a slab
approach to define the boundaries around positive data,
and then applied a 1-class SVM as a second stage filtering
of false positives for object detection. Using a 1-class SVM
trained with samples from the positive class and a few
outlier cases, Wu and Ye [26] attempt to maximize the
margin between the positive volume defined by a Gaussian
kernel and the outliers for the task of novelty detection.
This situation is similar to the approach proposed in this
paper, with the following key differences:

e Our training data consist of a larger sampling of
known data, instead of just a few outlier cases
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e We consider a balanced risk formulation after SVM
training

e We pursue a linear kernel approach that applies to
both the 1-class and binary SVM

Beyond computer vision, 1-class SVMs have been
considered in several other areas within pattern recogni-
tion, often implicitly to address open set recognition but
without formal definitions of that problem. One of the
earliest and best works is that of Manevitz and Yousef [27],
which considers the problem of document classification.
Using a 1-class SVM and a novel variation based on more
strict outlier detection, the authors show high levels of
classification accuracy on a standard document classifica-
tion dataset (Reuters). Manevitz and Yousef, like Zhou and
Huang [20], point out that accuracy is quite sensitive to the
choice of kernel and parameters, which they note is not well
understood for this problem. In a similar vein, our own
work [28] has used 1-class SVMs for an open set analysis of
literary style.

The field of speech processing has also considered 1-class
SVMs for problems with unknown classes. In Shen and
Yang’s work [29], a novel data description kernel based on
the 1-class SVM is developed for text-dependent speaker
verification. Kadri et al. [30] successfully apply 1-class
SVMs to audio stream segmentation to overcome the
problem of overlapping speech and very short speaker
changes by maximizing the generalized likelihood ratio
with respect to any probability distribution of the speech
windows. Rossignol and Pietquin [31] use a 1-class SVM
approach for audio segmentation in the context of over-
lapping speech. In a follow-up work to [30], Rabaoui et al.
[32] move beyond stream segmentation to consider speech
classification for recognition tasks.

While the 1-class SVM is specifically designed for the
open set problem, the potential of the binary SVM for this
problem should not be neglected. Specifically, when a
classifier is trained with positive samples from one class
and negative samples from multiple classes (as is common
in detection), it is a valid solution for open set recognition.
Binary SVMs attempt to learn a margin that maximizes the
separation between two classes. Let w be a normal vector to
a hyperplane. To separate the data in the linear binary case
(which we consider in this paper), the algorithm solves the
following optimization problem:

1
minul?, )

subject to

yi(w = z; +b) > 1,V,, (10)

where z; is the ith training example from the data
{z1,29,...,2m | i € X}, where X contains positive and
negative samples, and y; € {—1,+1} is, for the ith training
example, the correct output label.

Revisiting binary SVMs for detection tasks, Malisiewicz
et al. [33] note that a large ensemble of classifiers for a
particular class trained with a single positive example and
millions of negative examples yields surprisingly good
generalization. In this paper, we look at specific instances
where more limited samplings of training data are assumed
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to be available, especially with respect to the known classes,
where an approach like [33] cannot be easily applied.

Several binary SVM-like formulations should also be
mentioned. Like our algorithm, a few approaches can be
found that make use of multiple hyperplanes [34], [35], but
not in the context of open set recognition. With a variant of
the hinge loss function, Bartlett and Wegkamp [36]
introduce a form of classification with a reject option. The
reject option is a third decision for a binary classifier,
expressing doubt when the conditional probability for a
label of an observation is close to chance. To implement
such a reject option, Bartlett and Wegkamp describe a
construction (somewhat akin to our own fix for the problem
of overgeneralization) that uses a threshold to mark an
ambiguous decision space. However, the notion of rejection
here is introduced to address the problem of uncertainty
with respect to specific samples—not to reject samples that
are not from the class of interest.

3.2 Other Approches to Open Set Recognition

Outside of the strict SVM framework, there are several other
approaches that can apply to the open set problem, though
they do not specifically address it. Recently, the vision
community has produced some efforts to deal with the
expressiveness and learnability of object models as well as
the need for increasing amounts of training data [37].
Indeed, some work has been introduced to address the
problem of object classification when training and test
classes are disjoint (that is, no training examples of the
target classes are available). In this direction, researchers
have explored knowledge transfer for object class recogni-
tion such as: hierarchical structure of the object class space
imposed by a general-to-specific ordering [38], an inter-
mediate layer of descriptive attributes to represent object
classes [39], and direct similarity computations between
known object classes [40]. In the machine learning literature,
there is also some work in this direction such as zero-shot
[41] and one-shot [42] learning techniques. To deal with a
classification problem for which no training data are
available for some classes, all of these approaches need to
introduce a coupling between known and unknown classes.
According to Lampert et al. [39], given that training data for
the unobserved classes are not available, this coupling
cannot be learned from samples and often needs to be
inserted into the system by human effort.

It is useful to point out the differences between these
types of approaches and the one we discuss in this paper. In
the open set recognition problem, we have training samples
for the class of interest and samples for only some of the
negative classes. However, in our solution to this problem,
there is no need for any coupling between known and
unknown classes, nor is any human effort required. Some of
these above approaches have formal definitions, but with-
out constraints on smoothness or data accuracy. It should be
possible to develop a formalization that combines the
related definition for open set recognition with categories
which would formalize the open set variations of these
problems.

Finally, the open set recognition problem we consider in
this paper is also different from general unsupervised and
semi-supervised learning techniques (described in [43],
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[44]). Common unsupervised techniques (such as cluster-
ing) do not address the formal definition of the open set
problem, which is a more precise labeling than just an
identification of groups with similar appearance within a
large collection of images [45]. We want to make full use of
the available training examples that we have. In addition,
semi-supervised learning, which aims at the development
of techniques to take advantage of both labeled and
unlabeled samples [45], also does not apply to our problem
since we are not propagating labels from the known
samples to the unknown ones. In fact, our objective is to
minimize the total recognition error (5) for the class of
interest as we discussed in Section 2. Any solution to the
open set recognition problem could be applied as a tool in
semi-supervised learning, but the criterion for evaluation
might be significantly different.

4 INTRODUCING THE 1-vS-SET MACHINE

Our initial approach for the open set problem is based on a
new variant of SVM that we call the 1-vs-set machine. As
we described in Section 2, the risk minimization inherent in
solving the open set problem involves a minimization of the
positive labeled region to address open space risk (reflect-
ing overgeneralization) combined with margin constraints to
minimize empirical risk (reflecting overspecialization). In this
paper, we introduce a formulation with a linear kernel that
applies to both 1-class and binary SVMs. Since the open set
recognition problem is directly related to human cognition,
arguments can be made in favor of linear kernels as an
idealized discriminator with biological grounding [46], [47].
Moreover, in our experience, linear kernels produce better
results than nonlinear kernels for the same open set data
(we show this in Section 5).

The initial definitions of the 1-class SVM were based on
RBF kernels, but multiple works can be found [27], [48] that
use a 1-class SVM with linear kernels. Once the equations
for the 1-class SVM are defined, as in Section 3.1, the
minimization problem is still well defined for a linear
kernel. Intuitively, 1-class linear SVMs can be viewed as
taking all positive data, finding the plane that just touches
the support vectors and has the origin on the opposite
side of the plane from the training data. For binary SVMs,
the linear kernel is a typical choice, and is often used for the
open set problem of detection [3], [33]. Here, we describe
the details of the 1-vs-Set algorithm.

4.1 Formalization of Risk for Linear Kernels

The first step in solving the optimization problem is to
define a computationally tractable open space risk term.
Our open set concept suggests that there is risk from
labeling points far from the positive samples. As mentioned
in Section 2, one way to look at this is in terms of ratios of
Lebesgue measures. But computing Rp( f) for a given f may
be intractable. We start with an example to highlight the
general issues, but since our goal is just to minimize risk, we
are able to find another form such that we minimize Ry (f)
without ever explicitly computing it.

As a first approximation for open space risk, which we
call shell-modeled risk, we take a large ball around the
training samples, and an even larger ball around that one
and consider anything between the two balls to be “open
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space.” More formally, let S, be a ball of radius r,
containing the training data, and without loss of generality,
let it be oriented such that all positive training samples for
class y are in the upper half of the ball, with h as the
associated upper half-space such that the linear SVM
defines f(z) =1 when z € h and f(z) =0 when not. Let
S, be a ball of radius r, with the same center as S, and let
7o > ry. Shell-modeled open space S is thus the shell
S, — Sy, for an arbitrarily large r,. Recalling S = 5, — S, we
can formalize the shell-modeled risk Rs, for the half-space h
intersected with the shell S as

_ [sf@)dx Js,ondx =[5y do

Rs,(f) = -
() fs,, f(z)dx fS,mh dx (11)
—1_ M >1—Yal,
fS,mh dx rd

We emphasize that for traditional linear kernels, labeling
a half-space positive presents a significant risk of the
unknown. We can consider other models to further lower
the risk. The next simplest model, adding only one free
parameter to the classic linear kernel, is to consider the
piecewise constant f(x) to be positive only in the space
between two parallel hyperplanes. Consider a slab with
fixed thickness 6, ie., the space between two parallel
hyperplanes separated by distance 6. Assume that the slab
does not contain the center of balls S, and S,. It was shown
by Lévy and Pellegrino [49] that the relative measure of
such a slab compared to the measure of a d-dimensional ball
goes to zero as the radius grows. Thus, the slab’s
d-dimensional shell-modeled open space risk is zero.
Therefore, in what follows, we consider this specific slab
model, but with additional refinements.

Since for all slabs with small §, the shell-modeled risk will
approach zero for large shells, a more refined model is
desired to differentiate between slabs. We can consider the
risk for a fixed but large shell size—in which case the
thickness of the slab is directly proportional to risk. However,
we will also want to include terms for open space closer to the
training data. The refined model will use marginal-style
penalties where possible and penalties related to ratios of
Lebesgue measure within the large shell when not.

We define the class of functions H for the 1-vs-Set linear
kernels in d-dimensions to be the slab between two parallel
d-dimensional hyperplanes (A and € introduced in Section
1). We initialize the planes to just contain all positive
training data. We can generalize beyond the initial training
data by further separating the planes, or we can specialize
by moving either of the planes, bringing them closer
together. For a given plane orientation, the open space risk
is proportional to the separation distance between the
planes. Thus, our initial optimization starts by adjusting
parameters based on plane separation. In particular, we
define the overgeneralization risk as the expansion of plane
distance: ‘5“5’%, where 64 is the marginal distance of the near
plane, éq is the marginal distance of the far plane, and 6" is
the separation needed to account for all positive data. In a
similar manner, we define risk for overspecialization as
5“5;5/1. During the optimization, these two terms are
balanced with the empirical risk determined by classifying
the available training samples with respect to the original
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(a) Base Linear 1-vs-Set Machine

(b) Generalization
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(c) Specialization

Fig. 4. Example of linear 1-vs-set machine showing the (a) base slab for both the 1-class and binary formulations, where the second class is only
considered in the latter case, (b) the generalization, and (c) the specialization operators. Blue refers to generalization, red for specialization, and gray

for the base linear 1-vs-set machine.

margin. The decision to limit the growth based on the
spacing of the intraclass data is our initial solution to
balance overgeneralization risk from false positives if we
added large balls, with the need to generalize to avoid
future false negatives.

In the margin spaces w4 around the near plane and wq
around the far plane, we allow user specified control with
parameters p4 and po to weight the importance of those
nearby open spaces. We provide for these additional
refinements (described in Section 4.2) because only the user
can predict the openness of the problem and the importance
of local open spaces. Combining the overgeneralization and
overspecialization risk, along with any specified refinement,
our open space risk R, for a linear kernel slab model is

o — 6 &t
Q04
ot 0q — 04

R = + pawa + powa. (12)

4.2 Solving the Optimization Problem and Refining
with Near and Far Plane Pressures

Given these definitions, we can numerically optimize the

risk within the space of a slab. The optimization process for

the 1-class and binary machines is detailed in Algorithms 1

and 2.

Algorithm 1. Linear 1-vs-Set Machine Risk Optimization
Require: Parameter ),; Optional parameters «, 3
Require: Positive features V= {v1,v9,..., 0, | v; € P}
Require: Negative features K= {ki, ko, ... kn | ki € K,
1 < j < ¢}, for other known classes Kj,..., K.
1: Procedure TRAIN(A,, «, 3, V,K)
2:  if 1-class then Train a linear SVM f using V
3 else Train a linear SVM f using V, K
4:  end if
5: for Vu;, € V, K do
6: Classify n; = f(w;)
7 end for
8 § = sort(f)
9: s, =min(Vs; € f(V))
10:  s; = max(Vs; € f(V))
11: A = margin plane of f
12: Q= plane parallel to A at s;
13: Greedy Optimization iteratively move A to s, or
Sp—1, L to sj_1 or sj11 to minimize R.(f) + A Re,
while satisfying any constraints provided by «, 3
in Eq. (6).
14: end procedure

> Generate decision scores

> Sort decision scores

Algorithm 2. Linear 1-vs-Set Machine Plane Refinement
Require: Linear SVM f trained in Alg. 1
Require: Planes A and 2 from Alg. 1
Require: Near and far plane pressures py and pq
Require: Counts of positive and negative features m, n
Require: Sorted decision scores §

1: procedure REFINE (f, A,Q,pa,pa, m, n, §)

2:  Let i be the index of decision score s; touching A

3:  if i > 0 then Shift A to s;(3 —pa) + si—1(pa —3)

4: else Shift A to sp —paé"™ > No Margin, just

generalize

5. endif
Let j be the index of decision score s; touching 2
7:  if j < (m+n) then Shift Q to s;(po —3)

+5541(G — pa)

8: else Shift Q to s,,4, + pad™

A

> No Margin, just
generalize
9: endif

10: end procedure

Fig. 4 illustrates this process. The base linear 1-vs-set
machine, shown in Fig. 4a, will just touch the extremes of
the positive examples. We then turn to greedy optimization
to move the planes simultaneously. If all negative training
classes are outside that slab, the overspecialization risk
terms will counteract the open space risk term and move
the planes to generalize, as in Fig. 4b. If the negative
examples overlap the base slab, the overspecialization risk
will be 1, and the overgeneralization risk term and probably
the empirical risk term Rg will require the planes to move
inward, as in Fig. 4c.

Algorithm 1 will result in an optimization where each
plane is on a decision score from f. This is followed by a
fine-tuning to place each plane in between the point isolated
during optimization and the next closest positive or
negative point, with a special case when the plane is at an
extreme of the data. We refine the plane positions, general-
izing or specializing from the margin between the closest
data and the plane based on parameterized “pressures” py
and pq that control how far to move the plane between the
decision scores. If a decision score is the extreme, then we
cannot really define a margin-based refinement. This is a
relatively common case for 2. When this occurs, we limit
the generalization to be the user-specified pressure times
the positive data width 6*. The procedure for using
pressures to refine positions is detailed in Algorithm 2.
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The parameterized pressures impact how much specia-
lization vs generalization to apply. When considering the
risk from a large slab, we note that the near plane is likely to
have any unknown negative data impinge on or near the
positive boundary. For the far plane, it is more likely that
added positive data will be slightly beyond the existing
data, while negatives may not be so close. Thus, we provide
separate pressures so users may specialize on the near plane
while generalizing on the far plane. In our experiments, we
typically had better results after applying Algorithms 1 and
2 when the near plane specialized with respect to the
normal SVM margin, while the far plane generalized from
the initial optimization result. We note, however, that this is
partially just semantics as any position of the far plane is
really a specialization with respect to a standard SVM,
which could be viewed as a “far plane” at infinity. When
addressing open set problems, the risk of the unknown is
reduced by specializing the slab to be closer to the positive
examples.

Finally, from the learned model f and the refined planes
A and Q, any test vector ¢, can be classified using
Algorithm 3. In the software implementation, we sort the
distances and search from the base position to optimize
R.(f) + A\-Re. The code also supports setting fixed recall or
precision, which is easy to implement given the explicit
optimization process that satisfies both Definition 1 and
(6). Since we are using an extension of the LIBSVM [50]
library and sorting, our implementation is nonoptimized,
but the overall complexity of the linear 1-vs-set machine
can be made O(n) for n data items by using the ideas of
Joachims in [51], and simple selection to find the points
close to the near and far planes.

Algorithm 3. 1-vs-Set Machine Prediction
Require: Test feature vector t,
Require: Linear SVM f trained in Alg. 1
Require: Planes A and () from Alg. 2
1: function PREDICT (¢, f, A, Q)
2:  if (A< f(t,) and f(¢,) < ) then Return +1
3:  else Return —1
4:  end if
5: end function

5 EXPERIMENTAL ANALYSIS

An important goal of our experiments is to highlight the
radically different nature of datasets once they are
recontextualized to reflect an open set problem. Torralba
and Efros [3] have recently noted that “Indeed, some
datasets, that started out as data capture efforts aimed at
representing the visual world, have become closed worlds
unto themselves.” They go on to analyze the various biases
that exist in popular datasets, which are easily learned and
leveraged to inflate recognition accuracies in a closed set
scenario. By considering these same sets as open set
problems in a cross-data context, we can directly address
the problem of negative set bias (what the dataset considers
to be “the rest of the world” [3]). Here, we propose testing
scenarios that are more aligned with real-world scenarios
where we do not have knowledge of all classes.
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For the object recognition experiments presented in
Section 5.1, we make use of two different feature approaches.
The first approach is the popular Histogram of Oriented
Gradients (HOG) [4] descriptor, which is commonly used
for detection problems. Applying the standard procedure
described by Dalal and Triggs, we produced a 3,780-
dimension feature vector for each image considered in our
experiments below. In the second approach, the underlying
features used for classification are generated by extracting
points of interest (Pols) from the images using Difference
of Gaussians as proposed in [52], and then computing an
LBP-like [53] feature descriptor in a window around each
detected Pol. Feature vectors are composed of 59-dimension
histogram bins that summarize the feature descriptor
information for each image.

For the face verification experiments presented in
Section 5.2, we also make use of two different feature
approaches. The first approach is the same LBP-like
descriptor used for the object recognition experiments, but
applied exactly as described for faces in Sapkota et al. [53].
This results in 3,776-dimension histogram bins that are used
as feature vectors for learning. The second approach is the
common Gabor feature, which has been shown to produce
very good results for face verification [54]. Applying the
feature process described by Pinto et al. [54], we generate
86,400-dimension feature vectors.

Open set recognition presents a couple of new challenges
with respect to evaluation. Specifically, we need to address
the choice of which statistic to evaluate classification
performance, as well as the organization of the datasets.
This leads us to a few procedures that are not commonly
used in object recognition and face verification. Our
experiments below consider several aspects of classification,
including the statistical significance of the 1-vs-set machi-
ne’s results, an assessment of the parameter space defined
by ps and pq, and the impact of problem openness on
classification performance. All 1-vs-set machines in these
experiments follow the most general optimization of (5),
where A\, = 1, and were not trained with explicit constraints
(in (6), « =0 and § = 1). The near and far plane pressures
are set at default values of ps = 1.6 and pq =4 for all
experiments (except the one where we assess the impact of
changing these parameters) to provide an extra measure of
generalization.

Concerning statistics, accuracy is a natural choice for
evaluating binary decision classifiers. Simply defined,
accuracy refers to the correctly classified samples (true
positives TP and true negatives T'N) out of all of the
classification decisions (I'P, T'N, false positives F'P, and
false negatives F'N):

TP+TN
TP+TN+ FP+ FN'

Similarly, class averaged accuracy summarizes accuracies
across all ¢ classes for a given problem:

Accuracy = (13)

1 TP, +TN;
Class Avg. Acc. = — .
ass Avg. Acc 2 TP TN, T FP, 1 FN,

(14)

Class averaged accuracy cannot be used for open set
recognition because the total number of classes ¢ is always
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undefined. However, the typical accuracy measure of (13)
can, but it tends to underemphasize the distinction between
correct positive and negative classifications. Remember—
we are primarily interested in identifying a small number of
positive samples out of a much larger pool of negatives. To
highlight this point, consider a case where a classifier
returns one true positive out of 100 positive test samples,
and zero false positives out of 100,000 negative test samples.
This classifier is 99.9 percent accurate on this test—even
though it is essentially a “no” classifier. For this reason,
recall and precision are a common alternative.

Recall refers to the amount of correctly classified positive
examples with respect to all the available positive examples:
7P - Precision refers to the amount of correctly classified
positive examples with respect to all of the false and true
positives: 745 If we consider precision and recall for the
task of comparing different classifiers, we encounter the
problem of an “apples to oranges” comparison, where a
collection of statistics not fixed to a specific precision or
recall are present. For example, for the same training and
testing data, the 1-vs-set machine might produce a recall of
75 percent at a precision of 32 percent, while a binary SVM
produces a recall of 62 percent at a precision of 25 percent.
While ad hoc thresholding could be applied to the decision
scores to produce a precision-recall curve, a better way to
resolve this issue is to use F-measure, which provides us
with a consistent point of comparison across inconsistent
precision and recall numbers. In information retrieval and
machine learning, F-measure is applied as a combination of
precision and recall given by their harmonic mean:

Precision x Recall
F — measure = 2 x

. 15
Precision + Recall (15)

5.1 An Evaluation of Object Recognition

The data we consider for open set object recognition follow
a cross-dataset methodology adapted from [3]. For training,
we choose all classes from the Caltech 256 set. For testing,
we choose images for the positive class from Caltech 256,
but for the negative classes choose images from ImageNet
[55]. Despite the bias within Caltech 256, we wanted to
ensure some consistency between training and testing
samples for the positive class while attempting to general-
ize or specialize to the negatives from ImageNet based on a
limited sampling of negatives from Caltech 256. While we
have a sense of what our positives are during training, there
is no way to know a priori if positive classes across datasets
are consistent. However, negatives are definitely negative;
thus, we should be able to handle any examples from any
dataset based on our optimization. From this data, we
construct two “open universes” of different sizes, allowing
us to vary the training and testing data, which is somewhat
constrained by the number of images provided by both
datasets for the same classes. The first open universe
consists of 88 classes selected at random, where we choose
one class as positive, n classes as open set training data or
binary negatives (where n varies depending on the
experiment), and 87 classes as negatives for testing. The
second, more open, universe consists of 212 classes selected
at random, where we choose one class as positive, n classes
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as open set training or binary negatives, and 211 classes as
negatives for testing.

We follow a multiple trial randomized testing procedure
that selects different training, open set training, and testing
sets for each experimental trial. This is done to verify
consistency in the reported results across numerous trials,
thus limiting any misleading impressions outliers might
give for a single test. We cycle through all of the classes five
times, treating each class positively once per iteration. The
individual training and testing sample breakdowns vary as
a function of experiment, and are noted below as we
describe the individual tests. To ensure a fair comparison,
the 1-class 1-vs-set machine and all of the binary classifiers
are trained with the exact same positive and negative
examples. The 1-class machines use a default v parameter of
0.5, the binary machines use a default C parameter of 1, and
machines with an RBF kernel use a default v parameter of
one divided by the number of features (all LIBSVM default
settings). These tests represent a total of 532,400 images for
the open universe of 88 classes, and 13,610,400 images for
the open universe of 212 classes, in different combinations
across all of the randomized tests.

Our primary goal is to establish, in a rigorous statistical
manner, the advantage of the 1-class and binary 1-vs-set
machines over typical SVM classifiers for open set recogni-
tion problems. We do this by applying a 2-tailed paired t-
test [56] over all of the results for the classes from each of
the open worlds and for each of our two feature sets to
generate summary statistics. The t-test allows us to
determine if two sets of classification results differ from
each other in a significant way. The resulting p-values are
assessed at the 0.05 confidence level (95 percent confi-
dence). Our null hypothesis Hj states the F-measures from
the first set of classification results are lower than those of
the second set. We reject Hy, when the p-value is less than
0.05. We also note cases where p is less than 0.01.

For the open universe test of 88 classes with both the
HOG and LBP-like features, we train on 70 positive images
and 14 negative images each from five other classes
(approximately 5 percent of the available classes), and test
on 30 positive images and 435 negative images across all the
negative classes. For the more difficult open world of
212 classes, we train on 30 positive images and five negative
images each from six other classes (approximately 3 percent
of the available classes), and test on 30 positive images and
6,330 negative images across all the negative classes.

The results of these statistical tests are presented in
Table 2. In a direct comparison with other machines
utilizing a linear kernel, the results for the 1-class and
binary 1-vs-set machines are statistically significant: The
null hypothesis is rejected in all but a single case. Even
when we move to a cross-kernel comparison with typical
machines utilizing RBF kernels, the binary 1-vs-set machine
produces better results that are statistically significant in all
but a single case. Although this is an “apples to oranges”
comparison, RBF kernels are an obvious alternative to any
machine making use of a linear kernel on the exact same
data; thus, we include these results. We can conclude that
for open set recognition problems, the 1-vs-set machine is a
suitable alternative to typical SVM classifiers.
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TABLE 2
Top Half. Detailed Comparison between All of the Different Classifiers for the HOG Features over the Open Universe of 88 Classes;
Bottom Half. Summary Comparisons between the 1-vs-Set Machines and All Other Classifiers for the HOG Features
over the Open Universe of 212 Classes, and the LBP-Like Features for Both Open Universes

2-tailed paired t-test binary 1-vs-Set | binary linear | binary RBF | 1-class 1-vs-Set | 1-class linear | 1-class RBF
binary 1-vs-Set (HOG 88) w5 B e X B
binary linear (HOG 88) — — ++ + T+
binary RBF (HOG 88) — ++ ++ + T+
I-class 1-vs-Set (HOG 88) — — — ok —
1-class linear (HOG 88) — — — — —
1-class RBF (HOG 88) — — — — ++

binary 1-vs-Set (HOG 212)

1-class 1-vs-Set (HOG 212)

*

binary 1-vs-Set (LBP-like 88)

ek ek ek

1-class 1-vs-Set (LBP-like 88)

ek

binary 1-vs-Set (LBP-like 212) *

sesk sk sk

1-class 1-vs-Set (LBP-like 212)

sk

An ** or ++ means the results from testing H, (the F-measure of the Algorithm on the row is lower than that of the algorithm on the column) were
statistically significant at p = 0.01, * or + means p = 0.05. The * symbol indicates the 1-vs-set machine is significantly better in F-measure, while +
indicates a baseline machine is significantly better. Dashes indicate no statistical significance, and a gray cell means no test was performed (a

machine vs itself).

In the next series of experiments, we break out detail
from the 88-class open universe set with HOG features to
look at specific aspects affecting classification. First, the
reader might be interested in the actual F-measures outside
of the statistical summary presented above. Fig. 5a shows
the F-measures for the top 25 classes ranked by binary 1-vs-
Set machine performance. The binary SVM with a linear
kernel is also plotted as a baseline comparison for the same
classes. In every case shown, the binary 1-vs-set machine is
able to achieve a higher F-measure than the typical binary
SVM by solving the constrained minimization problem over
the exact same training data. The 1-class 1-vs-set machine
also shows a gain in F-measure, albeit at far more modest
intervals for these particular classes. However, the 1-class 1-
vs-set machine should not be neglected: For 27 of the 88
classes, it produces better F-measures than the binary 1-vs-
set machine. Compared to published results on the typical
closed set testing scenarios for the underlying datasets,
these F-measures might seem low, but one must remember
that this experiment is far more difficult: Both machines
saw only 5 percent of the total classes during training and
all of the classes during testing. By comparison, the
accuracy numbers shown in Fig. 5b for the same classes
are much higher. Accuracy places more emphasis on correct
negative classification instances in large open set scenarios.

Next, we turn to an assessment of the parameter space
defined by the near pressure p, and far pressure pq
described in Section 4.2. To analyze our results in a broader
context, the F-measure for this experiment considers all of
the true positives, false negatives, and false positives across
all classes from a series of randomized tests, as opposed to
just those from a single class as we did for the experiments
above. Using the 88-class open universe set with HOG
features, we searched the parameter space using binary
1-vs-set machines to gain a better understanding of the
impact of plane movement. Plotting portions of this data
around our default parameters of py =1.6 and pg =4
(Fig. 6), we can see that movement on the near and far
planes during training is indeed affecting the results
achieved during testing. Of particular interest is the impact
of moving the second plane {2 added by our algorithm (blue

curve in Fig. 6), which limits false positives in what was a
positive half-space. A bit too much generalization from the
plane established by Algorithm 1 (point 7 on the z-axis of
the blue curve in Fig. 6) can cause a dip in the F-measure.

Finally, we consider the impact of openness on F-
measure. Intuitively, when more classes are available
during training, we expect that the resulting classifiers
should be more accurate and this is exactly what we
observe in practice. For the curves shown in Fig. 7, we chose
60 images as positive testing data for each class, and varied
the openness of the test from 42 percent (30 negative classes
seen during training) to 82 percent (3 negative classes seen
during training). Testing remained constant at 30 positive
images and 435 negative images. Again, the F-measure for
this experiment considers all of the true positives, false
negatives, and false positives across all classes from a series
of tests. All three binary classifiers decrease in accuracy as
the world grows more open. However, even when just a
small number of classes are available during training, the
1-vs-set machine is able to drastically reduce the number of
false positives compared to the other machines.

5.2 An Evaluation of Face Verification

We also analyze the task of face verification, where people
are the classes, with less obvious interclass variations. We
chose to evaluate classes from another well-known and
challenging dataset: Labeled Faces in the Wild (LFW) [43].
LFW (like many verification sets) is traditionally used for
image-pair matching, which is really neither an open nor
closed problem based on the learning criteria of this paper.
However, we can still define training and testing sets from
it. The 12 people with at least 50 images (providing
sufficient training data) were selected as gallery classes.
For open set testing, we randomly selected 82 “impostors”
from other people in the LFW set, yielding a total of 1,316
test images across all classes.

The impact of problem “openness” is also a very
important factor for face verification, where a benchmark
test might not reflect the performance of an algorithm over
time as more people attempt to verify. Our experiments
evaluated this scenario, starting with a completely closed
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Fig. 5. A comparison between the 1-vs-set machine and typical SVMs with a linear kernel using two different statistics: (a) F-measure (b) and
accuracy. These plots represent detail from the open universe of 88 classes with HOG features test found in Table 2. The classes shown here
correspond to the top 25 for the binary 1-vs-set machine ranked by F-measure. Error bars reflect standard error. In every case shown, the binary 1-
vs-set machine produces a higher F-measure and accuracy score compared to a binary SVM. The 1-class 1-vs-set machine shows more modest
gains. In this very difficult open set scenario, accuracy places more emphasis on correct negative classification instances, where the F-measure
provides a more meaningful balance between correct positive and negative classification instances.

world of 12 people, and adding more impostors in each
individual experiment. Once again, we follow a five trial
randomized testing procedure that selects different training
(35 positive and negative samples per person) and testing
sets (14 different test samples per person) for each
experiment. Galleries are represented by binary 1-vs-set
machines and binary SVMs with linear kernels, which are
trained with the exact same positive and negative exam-
ples. The closed set scenario for verification considers only
the 12 known people for both the gallery and the probes
(the test samples). The four subsequent experiments
consider different numbers of probe classes to vary open-
ness from 24 (30 probe classes) to 52 percent (94 probe
classes). The gallery remains fixed at 12 people. This is
slightly different from the experiments described for object
recognition, where we varied the number of training

classes, but is more consistent with a critical analysis of
typical face verification testing.

Fig. 8 shows a comparison between the binary 1-vs-set
machine and binary SVM with a linear kernel across the LBP-
like and Gabor features. When the experiment is completely
closed, the problem appears easy, with all machines
producing high F-measures that are similar. However, as
the problem grows to be more open, a large gap in F-measure
appears between the 1-vs-set machine and the binary SVM.
Once experiments move beyond closed set testing protocols,
it quickly becomes clear that typical machines with strong
features are not always sufficient to address the open set
aspect of the problem. This is particularly important for face
verification, which is used in real-world authentication
applications. We also evaluated the statistical significance
of the 1-vs-set machine’s results using the 2-tailed paired
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Fig. 6. Examples of the near and far plane pressure parameter space
and corresponding F-measures when one of the two parameters is fixed
at our selected default. The F-measure in this plot is calculated over all
of the classes in the open world of 88 classes with HOG features. Notice
how movement on the near and far planes during Algorithms 1 and 2
makes a difference in the resulting F-measures over the test data.
Importantly, we see that the addition of a second plane 2 has an impact
on recognition performance.

t-test. In all open set cases, the results are significantly better
at a 95 percent confidence interval.

6 DiscussioN AND FUTURE WORK

By revisiting the ideas of the general recognition problem
and SVM-based recognition systems, we have gained a
better understanding of the challenges of the problem and
the shortcomings of the most frequently used solutions. In
an open world, we cannot have knowledge of all classes,
and it is impossible for us to sample and train on every
possible image configuration for a class. Even if we could,
with negatives greatly outnumbering positives, choosing
representative negative training examples for a binary or
multiclass classifier is problematic. The open set assump-
tion changes how we must evaluate what is a “solution”—
the risk of unknown classes must be accounted for without
causing unforeseen errors.

With this in mind, we formalized the open set recogni-
tion problem as a risk-minimizing constrained functional
optimization problem. As a first step toward a solution, we
introduced a novel “1-vs-set machine” as an extension of
the 1-class and binary SVMs to better support general-
ization and specialization in a manner that is consistent
with the open set problem definition. The experiments for
object recognition and face verification show that the 1-vs-
set machine is highly effective at improving accuracy when
compared to 1-class and binary SVMs for the same
problems. Interested readers can download our source
code for the 1-vs-set machine, as well the computed features
for all experiments, from http://www.metarecognition.
com/openset/.

Torralba and Efros [3] point out the effect of the closed-
world assumption: a focus on beating the latest benchmark
reports on the newest dataset. Many researchers in the
vision community have lost sight of the original purpose of
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Fig. 7. An assessment of the F-measure as a function of openness
(growing from left to right) for a collection of binary classifiers. The F-
measure in this plot is calculated over all of the classes in the open
universe of 88 classes with HOG features. As expected, all three
machines decrease in accuracy as the universe grows to be more open.
Even in the most open setting (82 percent), the 1-vs-set machine yields
8,129 fewer false positives compared to the binary SVM with a linear
kernel, and 10,377 fewer false positives compared to the binary SVM
with an RBF kernel. All 1-vs-set machine results are significantly better
at a 95 percent confidence interval.

these datasets: recognizing the visual world. By reformulating
the recognition problem as open set recognition, we
naturally avoid overtraining biases. An open set testing
methodology reduces the chance of dataset bias because
one cannot train on most of the data. While leave-one-out
cross validation is popular, the open set formulation
suggests a leave-most-out validation. By restructuring tests
over existing datasets, we hope to encourage researchers to
begin to address the more natural open set form of the
recognition problem. For instance, our results on an open
set reformulation of LFW may not be as impressive as the
closed set testing, but they highlight the actual difficulty of
unconstrained face verification.

The next step for this work is to extend our 1-vs-set
machine model to RBF kernels, which have a bounded

—Binary 1-vs-Set Machine, LBP-like
Binary 1-vs-Set Machine, Gabor

—Binary SVM, LBP-like
~—Binary SVM, Gabor

0.9

08 \

F-measure
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Fig. 8. Face verification results as a function of openness (growing from
left to right) for a collection of binary classifiers and LBP-like and Gabor
features. The F-measure in this plot is calculated over all of the classes
in the subset of LFW we consider. Notice that in closed set testing
(0 percent), there is not much difference between the 1-vs-set machines
and the typical binary classifiers. In all open set cases, the 1-vs-set
machine results are significantly better at a 95 percent confidence
interval.
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volume that can also be adapted via generalization or
specialization. This includes exploring alternative kernel
density estimators outside of an SVM framework. Another
future direction is to optimize other parameters beyond
open space risk and empirical risk. The binary SVM bias
term p and cost C are natural choices. We emphasize that
the 1-vs-set machine is only a first step toward an
algorithm that is a truly suitable solution for open set
recognition. Specific learning approaches that incorporate
open set recognition into their fundamental design
(especially at the initial density estimation stage) are of
great interest.
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